Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 8-Bromo-2-methylquinoline

Lin-Tao Yang, Fang Shen, Jiao Ye, Tian-Quan Wu and Ai-Xi Hu*<br>College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China<br>Correspondence e-mail: axhu0731@yahoo.com.cn

Received 26 May 2009; accepted 30 May 2009
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; $R$ factor $=0.071 ; w R$ factor $=0.195$; data-to-parameter ratio $=16.0$.

In the crystal structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrN}$, the dihedral angle between the two six-membered rings of the quinoline system is $0.49(16)^{\circ}$. The molecules are packed in a face-to-face arrangement fashion, with a centroid-centroid distance of $3.76 \AA$ between the benzene and pyridine rings of adjacent molecules. No hydrogen bonding is found in the crystal structure.

## Related literature

The title compound is an important intermediate in the pharmaceutical industry, see: Shen \& Hartwig (2006); Ranu et al. (2000); Lee \& Hartwig (2005). For related structures, see: Amini et al. (2008); Fazaeli et al. (2008); Sattarzadeh et al. (2009).


Monoclinic, $P 2_{1} / c$
$a=5.0440$ (17) A
$b=13.467$ (4) $\AA$
$c=13.391$ (4) $\AA$
$\beta=97.678$ (4) ${ }^{\circ}$
$V=901.4(5) \AA^{3}$

## $Z=4$

Mo $K \alpha$ radiation
$\mu=4.50 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
$0.36 \times 0.31 \times 0.28 \mathrm{~mm}$

## Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\text {min }}=0.235, T_{\text {max }}=0.286$

4668 measured reflections 1765 independent reflections 1039 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.156$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071 \quad 110$ parameters
$w R\left(F^{2}\right)=0.195$
H -atom parameters constrained
$S=1.01$
1765 reflections
$\Delta \rho_{\text {max }}=0.88 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.91 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was funded by the SIT program of Hunan University, China (2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2533).

## References

Amini, M. M., Mohammadnezhad, Sh. G. \& Khavasi, H. R. (2008). Acta Cryst. E64, o203.
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fazaeli, Y., Amini, M. M., Gao, S. \& Ng, S. W. (2008). Acta Cryst. E64, o97.
Lee, D.-Y. \& Hartwig, J.-F. (2005). Org. Lett. 7, 1169-1172.
Ranu, B. C., Hajra, A. \& Jana, U. (2000). Tetrahedron Lett. 41, 531-533.
Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. \& Ng, S. W. (2009). Acta Cryst. E65, m553.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shen, Q.-L. \& Hartwig, F. (2006). J. Am Chem Soc. 128, 10028-10029.

## Experimental

## Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrN}$

$$
M_{r}=222.08
$$

## supplementary materials

Acta Cryst. (2009). E65, ol490 [ doi:10.1107/S1600536809020625]

## 8-Bromo-2-methylquinoline

L.-T. Yang, F. Shen, J. Ye, T.-Q. Wu and A.-X. Hu

## Comment

The title compound, 8-bromo-2-methylquinoline, is an important intermediate of medcine industry (Shen \& Hartwig, 2006; Ranu et al., 2000; Lee \& Hartwig, 2005). The unit-cell of the title compound contains four molecules, and the corresponding bond lengths and angles of these molecules are agree with each other. The molecules are stablizated by $\pi$ - $\pi$ stacking (centroids distance is $3.76 \AA$ ). Herein we report the synthesis and crystal structure of 8-bromo-2-methylquinoline. For more related structures, see: Amini et al.(2008), Fazaeli et al. (2008), Sattarzadeh et al. (2009).

## Experimental

A solution of 2-bromoaniline $(0.05 \mathrm{~mol})$, boric acid $(3.10 \mathrm{~g})$ and $18 \% \mathrm{HCl}(50 \mathrm{ml})$ was heated to reflux. Then a mixture of crotonaldehyde $(0.06 \mathrm{~mol})$ and 2-bromonitrobenzene $(0.01 \mathrm{~mol})$ was slowly added with stirring in 1 h . The reaction mixture was subsequently stirred at 373 K for another 2.5 h , and then an equimolar amount of anhydrous $\mathrm{ZnCl}_{2}$ was added with vigorous stirring for 0.5 h . After the reaction was completed, the reaction solution was cooled in an ice bath and the crude brown solid was filtered, washed with 2-propanol, dissolved in the water, and neutralized with concentrated $\mathrm{NH}_{3} . \mathrm{H}_{2} \mathrm{O}$ solution to pH of 8 . After cool immersed, filtrated and air dried, the product was obtained as a grey solid. Yield: $52.0 \%$. m.p. 342-343 K. Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

## Refinement

The H -atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic, $0.96 \AA$ for methyl, and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

## Figures



Fig. 1. Molecular structure showing 30\% probability displacement ellipsoids.

## 8-bromo-2-methylquinoline

## Crystal data

$$
\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrN} \quad F_{000}=440
$$

## supplementary materials

$M_{r}=222.08$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=5.0440(17) \AA$
$b=13.467$ (4) $\AA$
$c=13.391(4) \AA$
$\beta=97.678(4)^{\circ}$
$V=901.4(5) \AA^{3}$
$Z=4$

## Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=291 \mathrm{~K}$
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.235, T_{\text {max }}=0.286$
4668 measured reflections
$D_{\mathrm{x}}=1.636 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 343 K
Mo K $\alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1765 reflections
$\theta=2.2-26.0^{\circ}$
$\mu=4.50 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Block, colourless
$0.36 \times 0.31 \times 0.28 \mathrm{~mm}$

1765 independent reflections
1039 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.156$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=2.2^{\circ}$
$h=-6 \rightarrow 6$
$k=-13 \rightarrow 16$
$l=-15 \rightarrow 16$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.195$
$S=1.01$
1765 reflections
110 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0989 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.88$ e $\AA^{-3}$
$\Delta \rho_{\min }=-0.91$ e $\AA^{-3}$
Extinction correction: none

## Special details

Experimental. 1H NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.33(\mathrm{~m}, 2 \mathrm{H}$, quinoline $3,6-\mathrm{H}), 7.73(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, quinoline $7-\mathrm{H}$ ), $8.02(\mathrm{~m}, 2 \mathrm{H}$, quinoline $4,5-\mathrm{H})$.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Br1 | $1.04425(17)$ | $0.41478(5)$ | $0.40291(5)$ | $0.0783(4)$ |
| N1 | $0.6713(11)$ | $0.2556(3)$ | $0.2991(3)$ | $0.0507(12)$ |
| C1 | $0.9974(14)$ | $0.3782(4)$ | $0.2655(4)$ | $0.0536(16)$ |
| C8 | $0.8122(12)$ | $0.3021(4)$ | $0.2325(4)$ | $0.0429(13)$ |
| C9 | $0.7845(13)$ | $0.2775(4)$ | $0.1287(4)$ | $0.0517(15)$ |
| C7 | $0.5039(14)$ | $0.1846(4)$ | $0.2646(5)$ | $0.0568(16)$ |
| C2 | $1.1397(14)$ | $0.4256(4)$ | $0.2022(6)$ | $0.0586(16)$ |
| H2 | 1.2578 | 0.4757 | 0.2266 | $0.070^{*}$ |
| C5 | $0.6014(14)$ | $0.2003(5)$ | $0.0957(5)$ | $0.0643(18)$ |
| H5 | 0.5778 | 0.1807 | 0.0285 | $0.077^{*}$ |
| C3 | $1.1122(15)$ | $0.4004(5)$ | $0.0989(5)$ | $0.0621(18)$ |
| H3 | 1.2156 | 0.4321 | 0.0561 | $0.074^{*}$ |
| C6 | $0.4624(16)$ | $0.1559(5)$ | $0.1622(5)$ | $0.070(2)$ |
| H6 | 0.3394 | 0.1064 | 0.1408 | $0.084^{*}$ |
| C4 | $0.9318(15)$ | $0.3287(5)$ | $0.0624(5)$ | $0.068(2)$ |
| H4 | 0.9066 | 0.3138 | -0.0061 | $0.082^{*}$ |
| C10 | $0.3468(14)$ | $0.1364(5)$ | $0.3370(6)$ | $0.0694(19)$ |
| H10A | 0.3969 | 0.0677 | 0.3444 | $0.104^{*}$ |
| H10B | 0.1596 | 0.1412 | 0.3123 | $0.104^{*}$ |
| H10C | 0.3821 | 0.1690 | 0.4011 | $0.104^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Br1 | $0.1139(9)$ | $0.0735(6)$ | $0.0436(4)$ | $-0.0082(4)$ | $-0.0042(4)$ | $-0.0114(3)$ |
| N1 | $0.059(3)$ | $0.050(3)$ | $0.042(3)$ | $0.011(3)$ | $0.004(2)$ | $0.005(2)$ |
| C1 | $0.074(5)$ | $0.044(3)$ | $0.040(3)$ | $0.005(3)$ | $-0.001(3)$ | $-0.001(2)$ |
| C8 | $0.037(3)$ | $0.050(3)$ | $0.040(3)$ | $0.012(3)$ | $0.001(2)$ | $-0.001(2)$ |
| C 9 | $0.054(4)$ | $0.063(3)$ | $0.037(3)$ | $0.009(3)$ | $0.002(3)$ | $-0.001(3)$ |
| C7 | $0.059(4)$ | $0.053(3)$ | $0.059(4)$ | $0.011(3)$ | $0.009(3)$ | $0.007(3)$ |
| C2 | $0.051(4)$ | $0.055(3)$ | $0.070(4)$ | $0.002(3)$ | $0.010(3)$ | $0.004(3)$ |
| C5 | $0.057(5)$ | $0.083(4)$ | $0.050(4)$ | $0.003(4)$ | $-0.006(3)$ | $-0.015(3)$ |
| C3 | $0.054(5)$ | $0.073(4)$ | $0.063(4)$ | $0.004(4)$ | $0.021(3)$ | $0.013(3)$ |
| C6 | $0.080(6)$ | $0.063(4)$ | $0.062(4)$ | $-0.002(4)$ | $-0.008(4)$ | $-0.007(3)$ |
| C4 4 | $0.081(6)$ | $0.085(5)$ | $0.039(3)$ | $0.013(4)$ | $0.012(3)$ | $0.004(3)$ |
| C10 | $0.054(4)$ | $0.068(4)$ | $0.088(5)$ | $0.002(4)$ | $0.015(4)$ | $0.007(4)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

## supplementary materials

| N1-C7 | 1.318 (8) | C5-C6 | 1.344 (10) |
| :---: | :---: | :---: | :---: |
| N1-C8 | 1.365 (7) | C5-H5 | 0.9300 |
| C1-C2 | 1.344 (9) | C3-C4 | 1.371 (10) |
| C1-C8 | 1.416 (8) | C3-H3 | 0.9300 |
| C8-C9 | 1.418 (7) | C6-H6 | 0.9300 |
| C9-C4 | 1.411 (9) | C4-H4 | 0.9300 |
| C9-C5 | 1.422 (9) | C10-H10A | 0.9600 |
| C7-C6 | 1.414 (8) | C10-H10B | 0.9600 |
| C7-C10 | 1.481 (9) | C10-H10C | 0.9600 |
| C2-C3 | 1.412 (10) |  |  |
| C7-N1-C8 | 118.0 (5) | C6-C5-H5 | 120.2 |
| C2- $\mathrm{C} 1-\mathrm{C} 8$ | 122.1 (6) | C9-C5-H5 | 120.2 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$ | 118.9 (5) | C4-C3-C2 | 119.5 (6) |
| $\mathrm{C} 8-\mathrm{C} 1-\mathrm{Br} 1$ | 119.0 (4) | C4-C3-H3 | 120.2 |
| N1-C8-C1 | 120.5 (5) | C2-C3-H3 | 120.2 |
| N1-C8-C9 | 122.8 (5) | C5-C6-C7 | 119.9 (7) |
| C1-C8-C9 | 116.7 (5) | C5-C6-H6 | 120.1 |
| C4-C9-C8 | 120.8 (6) | C7-C6-H6 | 120.1 |
| C4-C9-C5 | 122.4 (6) | C3-C4-C9 | 119.9 (6) |
| C8-C9-C5 | 116.8 (5) | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$ | 120.1 |
| N1-C7-C6 | 122.9 (6) | C9-C4-H4 | 120.1 |
| N1-C7-C10 | 117.6 (6) | C7-C10-H10A | 109.5 |
| C6-C7-C10 | 119.5 (7) | C7-C10-H10B | 109.5 |
| C1-C2-C3 | 120.9 (6) | H10A-C10-H10B | 109.5 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 119.6 | C7-C10-H10C | 109.5 |
| C3-C2-H2 | 119.6 | H10A-C10-H10C | 109.5 |
| C6-C5-C9 | 119.6 (6) | H10B-C10-H10C | 109.5 |

Fig. 1


